Application of wavelet denoising to improve compression efficiency while preserving integrity of digital micrographs.

نویسندگان

  • T Bernas
  • E K Asem
  • J P Robinson
  • B Rajwa
چکیده

Modern microscopy methods require efficient image compression techniques owing to collection of up to thousands of images per experiment. Current irreversible techniques such as JPEG and JPEG2000 are not optimized to preserve the integrity of the scientific data as required by 21 CFR part 11. Therefore, to construct an irreversible, yet integrity-preserving compression mechanism, we establish a model of noise as a function of signal in our imaging system. The noise is then removed with a wavelet shrinkage algorithm whose parameters are adapted to local image structure. We ascertain the integrity of the denoised images by measuring changes in spatial and intensity distributions of registered light in the biological images and estimating changes of the effective microscope MTF. We demonstrate that the proposed denoising procedure leads to a decrease in image file size when a reversible JPEG2000 coding is used and provides better fidelity than irreversible JPEG and JPEG2000 at the same compression ratio. We also demonstrate that denoising reduces image artefacts when used as a pre-filtering step prior to irreversible image coding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation

Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...

متن کامل

Can Wavelet Denoising Improve Motor Unit Potential Template Estimation?

Background: Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial. Objective: To investigate the possibility of improv...

متن کامل

Improvement of ISOM by using filter

Image compression helps in storing the transmitted data in proficient way by decreasing its redundancy. This technique helps in transferring more digital or multimedia data over internet as it increases the storage space. It is important to maintain the image quality even if it is compressed to certain extent. Depend upon this the image compression is classified into two categories : lossy and ...

متن کامل

Wavelet Transform in Image Processing : Denoising, Segmentation and Compression of Digital Images

Wavelet transform is a one of the most powerful concept used in image processing. Wavelet transform can divide a given function into different scale components and can find out frequency information without losing temporal information. Wavelet Transform is more suitable technique as compared to fourier transform because it is not possible with fourier transform to observe varying frequencies wi...

متن کامل

Semi-automatic wavelet soft-thresholding applied to digital image error level analysis

8 In this paper a method for detection of image forgery in lossy compressed digital images known as error level analysis (ELA) is presented and it’s noisy components are filtered with automatic wavelet soft-thresholding. With ELA, a lossy compressed image is recompressed at a known error rate and the absolute differences between these images, known as error levels, are computed. This method mig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of microscopy

دوره 231 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2008